3.1.30 \(\int (d+e x) \cos (a+b x+c x^2) \, dx\) [30]

Optimal. Leaf size=140 \[ \frac {(2 c d-b e) \sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b^2}{4 c}\right ) \text {FresnelC}\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right )}{2 c^{3/2}}-\frac {(2 c d-b e) \sqrt {\frac {\pi }{2}} S\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right ) \sin \left (a-\frac {b^2}{4 c}\right )}{2 c^{3/2}}+\frac {e \sin \left (a+b x+c x^2\right )}{2 c} \]

[Out]

1/2*e*sin(c*x^2+b*x+a)/c+1/4*(-b*e+2*c*d)*cos(a-1/4*b^2/c)*FresnelC(1/2*(2*c*x+b)/c^(1/2)*2^(1/2)/Pi^(1/2))*2^
(1/2)*Pi^(1/2)/c^(3/2)-1/4*(-b*e+2*c*d)*FresnelS(1/2*(2*c*x+b)/c^(1/2)*2^(1/2)/Pi^(1/2))*sin(a-1/4*b^2/c)*2^(1
/2)*Pi^(1/2)/c^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {3543, 3529, 3433, 3432} \begin {gather*} \frac {\sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b^2}{4 c}\right ) (2 c d-b e) \text {FresnelC}\left (\frac {b+2 c x}{\sqrt {2 \pi } \sqrt {c}}\right )}{2 c^{3/2}}-\frac {\sqrt {\frac {\pi }{2}} \sin \left (a-\frac {b^2}{4 c}\right ) (2 c d-b e) S\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right )}{2 c^{3/2}}+\frac {e \sin \left (a+b x+c x^2\right )}{2 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)*Cos[a + b*x + c*x^2],x]

[Out]

((2*c*d - b*e)*Sqrt[Pi/2]*Cos[a - b^2/(4*c)]*FresnelC[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])])/(2*c^(3/2)) - ((2*c*d
 - b*e)*Sqrt[Pi/2]*FresnelS[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])]*Sin[a - b^2/(4*c)])/(2*c^(3/2)) + (e*Sin[a + b*x
 + c*x^2])/(2*c)

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3529

Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[Cos[(b^2 - 4*a*c)/(4*c)], Int[Cos[(b + 2*c*x)^2/
(4*c)], x], x] + Dist[Sin[(b^2 - 4*a*c)/(4*c)], Int[Sin[(b + 2*c*x)^2/(4*c)], x], x] /; FreeQ[{a, b, c}, x] &&
 NeQ[b^2 - 4*a*c, 0]

Rule 3543

Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Sin[a + b*x + c*x^2]/(2*
c)), x] + Dist[(2*c*d - b*e)/(2*c), Int[Cos[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d
 - b*e, 0]

Rubi steps

\begin {align*} \int (d+e x) \cos \left (a+b x+c x^2\right ) \, dx &=\frac {e \sin \left (a+b x+c x^2\right )}{2 c}+\frac {(2 c d-b e) \int \cos \left (a+b x+c x^2\right ) \, dx}{2 c}\\ &=\frac {e \sin \left (a+b x+c x^2\right )}{2 c}+\frac {\left ((2 c d-b e) \cos \left (a-\frac {b^2}{4 c}\right )\right ) \int \cos \left (\frac {(b+2 c x)^2}{4 c}\right ) \, dx}{2 c}-\frac {\left ((2 c d-b e) \sin \left (a-\frac {b^2}{4 c}\right )\right ) \int \sin \left (\frac {(b+2 c x)^2}{4 c}\right ) \, dx}{2 c}\\ &=\frac {(2 c d-b e) \sqrt {\frac {\pi }{2}} \cos \left (a-\frac {b^2}{4 c}\right ) C\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right )}{2 c^{3/2}}-\frac {(2 c d-b e) \sqrt {\frac {\pi }{2}} S\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right ) \sin \left (a-\frac {b^2}{4 c}\right )}{2 c^{3/2}}+\frac {e \sin \left (a+b x+c x^2\right )}{2 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.64, size = 129, normalized size = 0.92 \begin {gather*} \frac {(2 c d-b e) \sqrt {2 \pi } \cos \left (a-\frac {b^2}{4 c}\right ) \text {FresnelC}\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right )-(2 c d-b e) \sqrt {2 \pi } S\left (\frac {b+2 c x}{\sqrt {c} \sqrt {2 \pi }}\right ) \sin \left (a-\frac {b^2}{4 c}\right )+2 \sqrt {c} e \sin (a+x (b+c x))}{4 c^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)*Cos[a + b*x + c*x^2],x]

[Out]

((2*c*d - b*e)*Sqrt[2*Pi]*Cos[a - b^2/(4*c)]*FresnelC[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])] - (2*c*d - b*e)*Sqrt[2
*Pi]*FresnelS[(b + 2*c*x)/(Sqrt[c]*Sqrt[2*Pi])]*Sin[a - b^2/(4*c)] + 2*Sqrt[c]*e*Sin[a + x*(b + c*x)])/(4*c^(3
/2))

________________________________________________________________________________________

Maple [A]
time = 0.07, size = 182, normalized size = 1.30

method result size
default \(\frac {e \sin \left (c \,x^{2}+b x +a \right )}{2 c}-\frac {e b \sqrt {2}\, \sqrt {\pi }\, \left (\cos \left (\frac {\frac {b^{2}}{4}-a c}{c}\right ) \FresnelC \left (\frac {\sqrt {2}\, \left (c x +\frac {b}{2}\right )}{\sqrt {\pi }\, \sqrt {c}}\right )+\sin \left (\frac {\frac {b^{2}}{4}-a c}{c}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \left (c x +\frac {b}{2}\right )}{\sqrt {\pi }\, \sqrt {c}}\right )\right )}{4 c^{\frac {3}{2}}}+\frac {\sqrt {2}\, \sqrt {\pi }\, d \left (\cos \left (\frac {\frac {b^{2}}{4}-a c}{c}\right ) \FresnelC \left (\frac {\sqrt {2}\, \left (c x +\frac {b}{2}\right )}{\sqrt {\pi }\, \sqrt {c}}\right )+\sin \left (\frac {\frac {b^{2}}{4}-a c}{c}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \left (c x +\frac {b}{2}\right )}{\sqrt {\pi }\, \sqrt {c}}\right )\right )}{2 \sqrt {c}}\) \(182\)
risch \(\frac {d \sqrt {\pi }\, {\mathrm e}^{-\frac {i \left (4 a c -b^{2}\right )}{4 c}} \erf \left (\sqrt {i c}\, x +\frac {i b}{2 \sqrt {i c}}\right )}{4 \sqrt {i c}}-\frac {e b \sqrt {\pi }\, {\mathrm e}^{-\frac {i \left (4 a c -b^{2}\right )}{4 c}} \erf \left (\sqrt {i c}\, x +\frac {i b}{2 \sqrt {i c}}\right )}{8 c \sqrt {i c}}-\frac {d \sqrt {\pi }\, {\mathrm e}^{\frac {i \left (4 a c -b^{2}\right )}{4 c}} \erf \left (-\sqrt {-i c}\, x +\frac {i b}{2 \sqrt {-i c}}\right )}{4 \sqrt {-i c}}+\frac {e b \sqrt {\pi }\, {\mathrm e}^{\frac {i \left (4 a c -b^{2}\right )}{4 c}} \erf \left (-\sqrt {-i c}\, x +\frac {i b}{2 \sqrt {-i c}}\right )}{8 c \sqrt {-i c}}+\frac {e \sin \left (c \,x^{2}+b x +a \right )}{2 c}\) \(225\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)*cos(c*x^2+b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/2*e*sin(c*x^2+b*x+a)/c-1/4*e*b/c^(3/2)*2^(1/2)*Pi^(1/2)*(cos((1/4*b^2-a*c)/c)*FresnelC(2^(1/2)/Pi^(1/2)/c^(1
/2)*(c*x+1/2*b))+sin((1/4*b^2-a*c)/c)*FresnelS(2^(1/2)/Pi^(1/2)/c^(1/2)*(c*x+1/2*b)))+1/2*2^(1/2)*Pi^(1/2)/c^(
1/2)*d*(cos((1/4*b^2-a*c)/c)*FresnelC(2^(1/2)/Pi^(1/2)/c^(1/2)*(c*x+1/2*b))+sin((1/4*b^2-a*c)/c)*FresnelS(2^(1
/2)/Pi^(1/2)/c^(1/2)*(c*x+1/2*b)))

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.76, size = 696, normalized size = 4.97 \begin {gather*} -\frac {\sqrt {2} \sqrt {\pi } {\left ({\left (\left (i - 1\right ) \, \cos \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) + \left (i + 1\right ) \, \sin \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right )\right )} \operatorname {erf}\left (\frac {2 i \, c x + i \, b}{2 \, \sqrt {i \, c}}\right ) + {\left (\left (i + 1\right ) \, \cos \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) + \left (i - 1\right ) \, \sin \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right )\right )} \operatorname {erf}\left (\frac {2 i \, c x + i \, b}{2 \, \sqrt {-i \, c}}\right )\right )} d}{8 \, \sqrt {c}} + \frac {{\left ({\left (\left (i - 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )} - \left (i + 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )}\right )} b^{2} \cos \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) + {\left (\left (i + 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )} - \left (i - 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )}\right )} b^{2} \sin \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) - 2 \, {\left ({\left (-\left (i - 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )} + \left (i + 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )}\right )} b c \cos \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) + {\left (-\left (i + 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )} + \left (i - 1\right ) \, \sqrt {2} \sqrt {\pi } {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{c}}\right ) - 1\right )}\right )} b c \sin \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right )\right )} x - 4 \, {\left (c {\left (i \, e^{\left (\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{4 \, c}\right )} - i \, e^{\left (-\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{4 \, c}\right )}\right )} \cos \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) - c {\left (e^{\left (\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{4 \, c}\right )} + e^{\left (-\frac {4 i \, c^{2} x^{2} + 4 i \, b c x + i \, b^{2}}{4 \, c}\right )}\right )} \sin \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right )\right )} \sqrt {\frac {4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}{c}}\right )} e}{16 \, c^{2} \sqrt {\frac {4 \, c^{2} x^{2} + 4 \, b c x + b^{2}}{c}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*cos(c*x^2+b*x+a),x, algorithm="maxima")

[Out]

-1/8*sqrt(2)*sqrt(pi)*(((I - 1)*cos(-1/4*(b^2 - 4*a*c)/c) + (I + 1)*sin(-1/4*(b^2 - 4*a*c)/c))*erf(1/2*(2*I*c*
x + I*b)/sqrt(I*c)) + ((I + 1)*cos(-1/4*(b^2 - 4*a*c)/c) + (I - 1)*sin(-1/4*(b^2 - 4*a*c)/c))*erf(1/2*(2*I*c*x
 + I*b)/sqrt(-I*c)))*d/sqrt(c) + 1/16*(((I - 1)*sqrt(2)*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^
2)/c)) - 1) - (I + 1)*sqrt(2)*sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b^2*cos(-1/4
*(b^2 - 4*a*c)/c) + ((I + 1)*sqrt(2)*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) - (I -
1)*sqrt(2)*sqrt(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b^2*sin(-1/4*(b^2 - 4*a*c)/c) -
 2*((-(I - 1)*sqrt(2)*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) + (I + 1)*sqrt(2)*sqrt
(pi)*(erf(1/2*sqrt(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b*c*cos(-1/4*(b^2 - 4*a*c)/c) + (-(I + 1)*sqrt
(2)*sqrt(pi)*(erf(1/2*sqrt((4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1) + (I - 1)*sqrt(2)*sqrt(pi)*(erf(1/2*sqrt
(-(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c)) - 1))*b*c*sin(-1/4*(b^2 - 4*a*c)/c))*x - 4*(c*(I*e^(1/4*(4*I*c^2*x^2 +
 4*I*b*c*x + I*b^2)/c) - I*e^(-1/4*(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c))*cos(-1/4*(b^2 - 4*a*c)/c) - c*(e^(1/4
*(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c) + e^(-1/4*(4*I*c^2*x^2 + 4*I*b*c*x + I*b^2)/c))*sin(-1/4*(b^2 - 4*a*c)/c
))*sqrt((4*c^2*x^2 + 4*b*c*x + b^2)/c))*e/(c^2*sqrt((4*c^2*x^2 + 4*b*c*x + b^2)/c))

________________________________________________________________________________________

Fricas [A]
time = 0.42, size = 141, normalized size = 1.01 \begin {gather*} \frac {\sqrt {2} {\left (2 \, \pi c d - \pi b e\right )} \sqrt {\frac {c}{\pi }} \cos \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) \operatorname {C}\left (\frac {\sqrt {2} {\left (2 \, c x + b\right )} \sqrt {\frac {c}{\pi }}}{2 \, c}\right ) - \sqrt {2} {\left (2 \, \pi c d - \pi b e\right )} \sqrt {\frac {c}{\pi }} \operatorname {S}\left (\frac {\sqrt {2} {\left (2 \, c x + b\right )} \sqrt {\frac {c}{\pi }}}{2 \, c}\right ) \sin \left (-\frac {b^{2} - 4 \, a c}{4 \, c}\right ) + 2 \, c e \sin \left (c x^{2} + b x + a\right )}{4 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*cos(c*x^2+b*x+a),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*(2*pi*c*d - pi*b*e)*sqrt(c/pi)*cos(-1/4*(b^2 - 4*a*c)/c)*fresnel_cos(1/2*sqrt(2)*(2*c*x + b)*sqrt
(c/pi)/c) - sqrt(2)*(2*pi*c*d - pi*b*e)*sqrt(c/pi)*fresnel_sin(1/2*sqrt(2)*(2*c*x + b)*sqrt(c/pi)/c)*sin(-1/4*
(b^2 - 4*a*c)/c) + 2*c*e*sin(c*x^2 + b*x + a))/c^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (d + e x\right ) \cos {\left (a + b x + c x^{2} \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*cos(c*x**2+b*x+a),x)

[Out]

Integral((d + e*x)*cos(a + b*x + c*x**2), x)

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 0.49, size = 325, normalized size = 2.32 \begin {gather*} -\frac {\sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (-\frac {1}{4} \, \sqrt {2} {\left (2 \, x + \frac {b}{c}\right )} {\left (-\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}\right ) e^{\left (-\frac {i \, b^{2} - 4 i \, a c}{4 \, c}\right )}}{4 \, {\left (-\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}} - \frac {\sqrt {2} \sqrt {\pi } d \operatorname {erf}\left (-\frac {1}{4} \, \sqrt {2} {\left (2 \, x + \frac {b}{c}\right )} {\left (\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}\right ) e^{\left (-\frac {-i \, b^{2} + 4 i \, a c}{4 \, c}\right )}}{4 \, {\left (\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}} + \frac {\frac {\sqrt {2} \sqrt {\pi } b \operatorname {erf}\left (-\frac {1}{4} \, \sqrt {2} {\left (2 \, x + \frac {b}{c}\right )} {\left (-\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}\right ) e^{\left (-\frac {i \, b^{2} - 4 i \, a c - 4 \, c}{4 \, c}\right )}}{{\left (-\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}} - 2 i \, e^{\left (i \, c x^{2} + i \, b x + i \, a + 1\right )}}{8 \, c} + \frac {\frac {\sqrt {2} \sqrt {\pi } b \operatorname {erf}\left (-\frac {1}{4} \, \sqrt {2} {\left (2 \, x + \frac {b}{c}\right )} {\left (\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}\right ) e^{\left (-\frac {-i \, b^{2} + 4 i \, a c - 4 \, c}{4 \, c}\right )}}{{\left (\frac {i \, c}{{\left | c \right |}} + 1\right )} \sqrt {{\left | c \right |}}} + 2 i \, e^{\left (-i \, c x^{2} - i \, b x - i \, a + 1\right )}}{8 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)*cos(c*x^2+b*x+a),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*sqrt(pi)*d*erf(-1/4*sqrt(2)*(2*x + b/c)*(-I*c/abs(c) + 1)*sqrt(abs(c)))*e^(-1/4*(I*b^2 - 4*I*a*c)
/c)/((-I*c/abs(c) + 1)*sqrt(abs(c))) - 1/4*sqrt(2)*sqrt(pi)*d*erf(-1/4*sqrt(2)*(2*x + b/c)*(I*c/abs(c) + 1)*sq
rt(abs(c)))*e^(-1/4*(-I*b^2 + 4*I*a*c)/c)/((I*c/abs(c) + 1)*sqrt(abs(c))) + 1/8*(sqrt(2)*sqrt(pi)*b*erf(-1/4*s
qrt(2)*(2*x + b/c)*(-I*c/abs(c) + 1)*sqrt(abs(c)))*e^(-1/4*(I*b^2 - 4*I*a*c - 4*c)/c)/((-I*c/abs(c) + 1)*sqrt(
abs(c))) - 2*I*e^(I*c*x^2 + I*b*x + I*a + 1))/c + 1/8*(sqrt(2)*sqrt(pi)*b*erf(-1/4*sqrt(2)*(2*x + b/c)*(I*c/ab
s(c) + 1)*sqrt(abs(c)))*e^(-1/4*(-I*b^2 + 4*I*a*c - 4*c)/c)/((I*c/abs(c) + 1)*sqrt(abs(c))) + 2*I*e^(-I*c*x^2
- I*b*x - I*a + 1))/c

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \cos \left (c\,x^2+b\,x+a\right )\,\left (d+e\,x\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(a + b*x + c*x^2)*(d + e*x),x)

[Out]

int(cos(a + b*x + c*x^2)*(d + e*x), x)

________________________________________________________________________________________